
PARABOLIC GEOMETRIES
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LECTURE 5: INTERPRETING THE KILLING FORM
(PART 1: AN ALGEBRAIC HEURISTIC)

JACOB W. ERICKSON

The Killing form is an exceptionally powerful idea in Lie theory. It is
the key to understanding much of the structure theory of Lie algebras,
and as such, it will be a vital part of our exploration into parabolic
geometries.

Unfortunately, the Killing form is notoriously tricky to understand
intuitively; many mathematicians even assume that it cannot be. This Of course,

given a pair
of elements
in a Lie alge-
bra, we can
compute the
Killing form
applied to that
pair, but that
ultimately just
gives us a num-
ber. Visually,
what does that
number tell us?

lecture and its sequel are the result of nearly a decade of trying to
understand the intuition behind the Killing form; I am still not en-
tirely satisfied—perhaps after another eight years I’ll have even better
answers—but I hope that, by sharing this, I can help you avoid strug-
gling with it as much as I did.

The lecture should proceed as follows:

• Review the definition of the Killing form
• Rediscover a convincing reason for the conic section terminology
in the classification of elements of sl2R

• Compare the Killing form on sl2R to the notion of eccentricity
for conic sections

• Learn how to interpret the Killing form for general Lie algebras

As we said above, a fundamental understanding of the Killing form
will be crucial for the lectures to come. In the next lecture, we will
present the Killing form in a more geometric context, after which we
will finally be ready to define parabolic subgroups.

1. Introduction

To start, let’s define the Killing form.

Definition 1.1. The Killing form ŋ on a Lie algebra g is the symmetric
bilinear form given by ŋ(X, Y ) := tr(adX ◦ adY ).

As an example, let us look at sl2R. For [ a b
c −a ], [

z y
x −z ] ∈ sl2R,[[

a b
c −a

]
,

[[
z y
x −z

]
,

[
0 0
1 0

]]]
=

[[
a b
c −a

]
,

[
y 0

−2z −y

]]
=

[
−2bz −2by

2cy + 4az 2bz

]
,

1
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a b
c −a

]
,

[[
z y
x −z

]
,

[
1 0
0 −1

]]]
=

[[
a b
c −a

]
,

[
0 −2y
2x 0

]]
=

[
2(bx+ cy) −4ay

−4ax −2(bx+ cy)

]
,

and [[
a b
c −a

]
,

[[
z y
x −z

]
,

[
0 1
0 0

]]]
=

[[
a b
c −a

]
,

[
−x 2z
0 x

]]
=

[
−2cz 4az + 2bx
−2cx 2cz

]
,

so

ŋ ([ a b
c −a ], [

z y
x −z ]) = tr

(
ad[ a b

c −a ]
◦ ad[ z y

x −z ]

)
= 2cy + 4az + 2(bx+ cy) + 4az + 2bx

= 8az + 4(bx+ cy).

In particular, note that the elements [ 1 0
0 −1 ], [

0 1
1 0 ], and [ 0 −1

1 0 ] are or-
thogonal with respect to ŋ, with

ŋ([ 1 0
0 −1 ], [

1 0
0 −1 ]) = ŋ([ 0 1

1 0 ], [
0 1
1 0 ]) = 8

and

ŋ([ 0 −1
1 0 ], [ 0 −1

1 0 ]) = −8,

so that ŋ is nondegenerate on sl2R with signature (2, 1).

Arguably one of the main reasons that the Killing form is so remark-
ably useful is that it is intrinsic to the Lie algebra itself, so that it does
not depend on any particular description of its elements. Formally, this
just means that the Killing form is automorphism-invariant.

Proposition 1.2. The Killing form is invariant under automorphisms.
In other words, if ϕ is an automorphism of g and X, Y ∈ g, then
ŋ(ϕ(X), ϕ(Y )) = ŋ(X, Y ).

Proof. Because ϕ is an automorphism, [ϕ(X), Y ] = ϕ([X,ϕ−1(Y )]),
hence adϕ(X) = ϕ ◦ adX ◦ϕ−1. Thus,

ŋ(ϕ(X), ϕ(Y )) = tr(adϕ(X) ◦ adϕ(Y ))

= tr((ϕ ◦ adX ◦ϕ−1) ◦ (ϕ ◦ adY ◦ϕ−1))

= tr(ϕ ◦ (adX ◦ adY ) ◦ ϕ−1)

= tr(adX ◦ adY ) = ŋ(X, Y ). □

Note that, for every g ∈ G, Adg is an automorphism of g, so for
X, Y, Z ∈ g, ŋ(Adexp(tX)(Y ),Adexp(tX)(Z)) = ŋ(Y, Z). Differentiating
this, we get another useful property of the Killing form.

Corollary 1.3. For X, Y, Z ∈ g, ŋ(adX(Y ), Z) + ŋ(Y, adX(Z)) = 0.
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Even with just this information so far, the Killing form lets us prove
very interesting things.

Proposition 1.4. The Lie algebra sl2R is isomorphic to o(1, 2).

Proof. Consider the symmetric bilinear form −ŋ on the 3-dimensional
vector space sl2R. By Corollary 1.3, for X, Y, Z ∈ sl2R,

−ŋ(adX(Y ), Z)− ŋ(Y, adX(Z)) = 0,

so under the adjoint representation, sl2R maps into the Lie algebra
o(−ŋ) ≈ o(1, 2). Since the adjoint representation of sl2R is injective
and dim(sl2R) = 3 = dim(o(1, 2)), this means that the adjoint repre-
sentation gives an isomorphism of sl2R with o(1, 2). □

An explicit realization of this isomorphism ρ : sl2R → o(1, 2) is given
by [

a b
c −a

]
7→

 0 b+ c 2a
b+ c 0 c− b
2a b− c 0

 ,

with inverse ρ−1 : o(1, 2) → sl2R given by0 r s
r 0 −t
s t 0

 7→ 1

2

[
s r + t

r − t −s

]
.

We’ll use this to relate elements of sl2R to hyperbolic geometry.

2. Classification of elements of sl2R

Elements of sl2R have a well-known classification using the terminol-
ogy of conic sections: every X ∈ sl2R is either hyperbolic, parabolic,
or elliptic.

Definition 2.1. Suppose X ∈ sl2R, viewed as a linear endomorphism
of R2.

• If X is diagonalizable over R, then we say that X is hyperbolic.
• If X is nilpotent, then we say that X is parabolic.
• If X has purely imaginary eigenvalues, then we say that X is
elliptic.

It’s not too difficult to see that every nonzero X ∈ sl2R falls into
exactly one of these three categories: because X has trace 0 by defini-
tion, the complex eigenvalues of X must be λ and −λ for some λ ∈ C.
Since X is a real matrix, the eigenvalues must be complex conjugates
of each other if they are not real, so if they are not real, then λ and
−λ = λ̄ must be purely imaginary. If λ = 0 = −λ and X ̸= 0, then X
must be nilpotent. Finally, if λ and −λ are real and nonzero, then X
is diagonalizable over R by definition.

Of course, none of this explains why we’re using this conic section
terminology. Where does this terminology come from?
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Recall that our model for the hyperbolic plane was (PO(1, 2),O(2)),
so that elements of o(1, 2) determine one-parameter subgroups of hy-
perbolic isometries. We also had a projection map pr : H2 → R2, given
by identifying H2 ∼= PO(1, 2)/O(2) with the sheet through e1 of the
hyperboloid Q−1(1) for Q(ae1 + be2 + ce3) = a2 − b2 − c2 and then pro-
jecting to the plane ⟨e2, e3⟩, which allowed us to topologically identify
H2 with R2.

Figure 1. The map pr : H2 → R2 identifies the point
ae1 + be2 + ce3 ∈ Q−1(1) with the point [ bc ] ∈ R2

Utilizing the isomorphism ρ : sl2R → o(1, 2), let us look at some
one-parameter subgroups of hyperbolic isometries corresponding to el-
ements of sl2R.

The parabolic element [ 0 1
0 0 ] of sl2R maps to

ρ([ 0 1
0 0 ]) =

0 1 0
1 0 −1
0 1 0

 ,

so

exp(tρ([ 0 1
0 0 ])) =

1 + t2

2
t − t2

2
t 1 −t
t2

2
t 1− t2

2

 .

Applying this to e1, thought of as the identity coset of PO(1, 2)/O(2),
and looking at the image under the projection pr, we get

pr(exp(tρ([ 0 1
0 0 ])) · e1) =

[
t

t2/2

]
.

In particular, the orbit of this one-parameter subgroup through e1
projects to a parabola! Indeed, all of its orbits on H2 project to
parabolas!

More generally, let’s consider the element 1
2
[ 0 r+1
r−1 0 ]. For r2 > 1, this

element has eigenvalues λ = 1
2

√
r2 − 1 and −λ, so it is diagonalizable
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Figure 2. The orbits of the one-parameter subgroup
exp(tρ([ 0 1

0 0 ])) all project to parabolas!

over R, hence it is hyperbolic. In this case, we get corresponding one-
parameter subgroups

exp

(
t

2
ρ([ 0 r+1

r−1 0 ])

)
=


r2 cosh(

√
r2−1t)−1

r2−1
r sinh(

√
r2−1t)√

r2−1
−r cosh(

√
r2−1t)−1

r2−1

r sinh(
√
r2−1t)√

r2−1
cosh(

√
r2 − 1t) − sinh(

√
r2−1t)√

r2−1

r cosh(
√
r2−1t)−1

r2−1
sinh(

√
r2−1t)√

r2−1

r2−cosh(
√
r2−1t)

r2−1

 ,

and the orbit of this through e1 projects to (the connected component
through 0 of) the hyperbola given by(

y +
r

r2 − 1

)2

− x2

r2 − 1
=

(
r

r2 − 1

)2

.

Figure 3. When r2 > 1, the orbits of the one-parameter
subgroup exp( t

2
ρ([ 0 r+1

r−1 0 ])) all project to hyperbolas
with eccentricity |r|
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In fact, every orbit of this one-parameter subgroup projects to (a con-
nected component of) a hyperbola with eccentricity1 |r|.

Finally, as you may have guessed by now, the element 1
2
[ 0 r+1
r−1 0 ] is

elliptic for r2 < 1. Such elements give us one-parameter subgroups

exp

(
t

2
ρ([ 0 r+1

r−1 0 ])

)
=


1−r2 cos(

√
1−r2t)

1−r2
r sin(

√
1−r2t)√
1−r2

−r 1−cos(
√
1−r2t)

1−r2

r sin(
√
1−r2t)√
1−r2

cos(
√
1− r2t) − sin(

√
1−r2t)√
1−r2

r 1−cos(
√
1−r2t)

1−r2
sin(

√
1−r2t)√
1−r2

cos(
√
1−r2t)−r2

1−r2

 ,

whose orbits project to ellipses of eccentricity |r| (except for the orbitIt’s probably
worth noting
as well, as I re-
membered the
night before
the lecture,
that elliptic
and hyperbolic
one-parameter
subgroups for
SL2R also
trace out el-
lipses and hy-
perbolas from
the action on
R2.

that consists of the fixed point of the one-parameter subgroup). In par-
ticular, for r ̸= 0, the orbit of exp

(
t
2
ρ([ 0 r+1

r−1 0 ])
)
through e1 projects

to the ellipse determined by the equation(
y − r

1− r2

)2

+
x2

1− r2
=

(
r

1− r2

)2

.

Figure 4. When r2 < 1, the orbits of the one-parameter
subgroup exp( t

2
ρ([ 0 r+1

r−1 0 ])) all project to ellipses with
eccentricity |r|, except for the one orbit corresponding to
the fixed point

In general, elements of sl2R are elliptic, parabolic, or hyperbolic ac-
cording to whether the orbits of their one-parameter subgroups project
to conic sections of eccentricity in [0, 1), equal to 1, or greater than 1,
respectively.

1Recall that the eccentricity of a conic is the ratio of the distance of a given
point from a point called the “focus” and the distance of that same point from a
line called the “directrix”. The actual definition isn’t really that important though;
the significance of the eccentricity is that it completely determines a conic section
up to similarity transformations, with ellipses of eccentricity in [0, 1), parabolas of
eccentricity 1, and hyperbolas of (finite) eccentricity greater than 1.
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3. The Killing form on sl2R

Eccentricity gives us a parameter that uniquely determines a conic
section up to similarity transformations. We would like something sim-
ilar for elements of sl2R: a real number that completely characterizes
an element of sl2R up to automorphism. As it turns out, the Killing
form gives us such a parameter.

Theorem 3.1. For nonzero X, Y ∈ sl2R, there is an automorphism ϕ
such that ϕ(X) = Y if and only if ŋ(X,X) = ŋ(Y, Y ).

Proof. This is actually much less daunting than it seems. To start,
automorphisms of sl2R are exactly conjugations by elements of GL2R,
so this is just a fancy way of saying that X and Y are conjugate over R
whenever ŋ(X,X) = ŋ(Y, Y ). To show this, we just find representatives
of each conjugacy class and evaluate ŋ on them; since ŋ is invariant
under automorphisms, the choice of representative does not matter.

The Jordan decomposition tells us that every nonzero X ∈ sl2R is
conjugate over C to precisely one matrix of the form [ λ 0

0 −λ ], [
0 1
0 0 ], or

[ iλ 0
0 −iλ ] for some λ > 0. Since real matrices that are conjugate over

C are conjugate over R and [ 0 −1
1 0 ] is conjugate to [ i 0

0 −i ] over C, this
means that every nonzero X ∈ sl2R is conjugate over R to exactly one
element of the form [ λ 0

0 −λ ], [
0 1
0 0 ], or [

0 −λ
λ 0 ] for some λ > 0.

Thus, because we have ŋ([ λ 0
0 −λ ], [

λ 0
0 −λ ]) = 8λ2, ŋ([ 0 1

0 0 ], [
0 1
0 0 ]) = 0,

and ŋ([ 0 −λ
λ 0 ], [ 0 −λ

λ 0 ]) = −8λ2, which never coincide for λ > 0, each con-
jugacy class is uniquely determined by the value of the Killing form. □

Figure 5. We can imagine ŋ(X,X) for X ∈ sl2R to be
a parameter describing X on a continuum where nega-
tive values correspond to diagonalizability over C with
imaginary eigenvalues, 0 corresponds to nilpotence, and
positive values correspond to diagonalizability over R
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From the above proof, we see that an element X ∈ sl2R is elliptic
if and only if ŋ(X,X) < 0, parabolic if and only if ŋ(X,X) = 0,
and hyperbolic if and only if ŋ(X,X) > 0. In particular, we can
imagine ŋ(X,X) to be a parameter describing X on a continuum where
negative values correspond to diagonalizability over C with imaginary
eigenvalues, 0 corresponds to nilpotence, and positive values correspond
to diagonalizability over R.

4. What does the Killing form tell us?

For general Lie algebras g, the Killing form obviously isn’t going to
completely determine elements up to automorphism the way it does
for sl2R. Nevertheless, ŋ can still tell us a lot about how elements of g
behave, if we look at it the right way.

To start, note that ŋ(X,X) = tr(ad2
X) is the sum of the squares of

the eigenvalues of adX . This tells us, in particular, that if we want to
understand ŋ, then we need to look at elements, as well as notions like
diagonalizability and nilpotence, from the perspective of the adjoint
representation. Going back to the special case of sl2R, for example, we
can reclassify elements in terms of the adjoint representation.

Definition 4.1. Suppose X ∈ sl2R.
• X is hyperbolic if and only if adX is diagonalizable over R.
• X is parabolic if and only if it is ad-nilpotent.
• X is elliptic if and only if adX is diagonalizable over C with
eigenvalues in iR.

Even in a general real Lie algebra g, if adX is diagonalizable over
R, then we will have ŋ(X,X) > 0. Of course, we won’t necessarily
get the converse as we do for sl2R, but if ŋ(X,X) > 0, then we can
say that the sum of the squares of the real parts of the eigenvalues of
adX is bigger than the sum of the squares of the imaginary parts. In
other words, ŋ(X,X) > 0 if and only if the real parts of the eigenvalues
contribute the most to the behavior of adX , in which case we can think
of it as “mostly scaling”.

Similarly, when ŋ(X,X) < 0, the sum of the squares of the imaginary
parts of the eigenvalues of adX is more than the sum of the squares
of the real parts. In particular, if adX is diagonalizable over C with
all eigenvalues in iR, then ŋ(X,X) < 0, and while we can’t get a true
converse in general, we can think of adX in this case as being “mostly
rotation”. Notably, we will have ŋ(X,X) < 0 whenever X comes from
a subalgebra corresponding to a compact subgroup and X isn’t central.
Finally, ad-nilpotent elements X will satisfy ŋ(X,X) = 0. Again,

unlike in the case of sl2R, ŋ(X,X) = 0 doesn’t necessarily guarantee
that adX is nilpotent, but it does mean that the sum of the squares of
the eigenvalues of adX is 0. We can kind of think of this as meaning
that “the compact and scaling parts of adX cancel out”.
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Figure 6. Attempted illustrations of the terms “mostly
scaling” and “mostly rotation”

Exercise. Suppose K is a compact Lie group. What can we say about
the Killing form on the Lie algebra k? (Note that K could have non-
trivial center.)

Exercise. Suppose N is a nilpotent Lie group. What can we say about
the Killing form on the Lie algebra n?

Exercise. Using that elements of the ideal of translations in i(2) are
ad-nilpotent, describe the Killing form on i(2) without performing any
computations.

Of course, we would also like to be able to say things about ŋ(X, Y )
for X ̸= Y . Using polarization,

ŋ(X, Y ) =
1

2
(ŋ(X + Y,X + Y )− ŋ(X,X)− ŋ(Y, Y )).

This is particularly useful when X and Y are ad-nilpotent, in which
case ŋ(X, Y ) = 1

2
ŋ(X + Y,X + Y ). Thus, for ad-nilpotent X and Y ,

ŋ(X, Y ) > 0 when adX+Y is “mostly scaling” and ŋ(X, Y ) < 0 when
adX+Y is “mostly rotation”. For example, ŋ([ 0 1

0 0 ], [
0 0
1 0 ]) > 0 because

[ 0 1
0 0 ]+ [ 0 0

1 0 ] = [ 0 1
1 0 ] is “mostly scaling”, and ŋ([ 0 −1

0 0 ], [ 0 0
1 0 ]) < 0 because

[ 0 −1
1 0 ] is “mostly rotation”.
Next time, we will focus on g where ŋ is nondegenerate, in which case

we say that g is semisimple. For semisimple Lie algebras, the behavior
of ŋ described above suggests a particular form for g: there should be an
ad-diagonalizable part together with ad-nilpotent elements occurring in
pairs on which the Killing form is nonzero.


